談話会のご案内

芝浦工業大学システム理工学部数理科学科では,学内外の研究者をお招きして,研究について語っていただく談話会を開催しております.

次回の談話会

以下の要領で談話会を開催致しますので, ご案内申し上げます.
皆様のご参加をお待ちしております.


第67回: 2018 年 2 月 23 日 (金) 15:00~
場所 芝浦工業大学大宮キャンパス5号館2F 演習室(数理棟5284室)
講演者 斎藤 明 氏(日本大学)
講演タイトル 有限集合を生成する禁止部分グラフ
講演概要 いくつかの連結グラフ$H_1,\dots, H_k$について、いずれの $H_i$($1\le i\le k$)も誘導部分グラフに含まないグラフを$\{H_1,\dots, H_k\}$-フリーグラフとよぶ。またこのときの $H_1,\dots, H_k$ を禁止部分グラフとよぶ。グラフ理論では、様々な性質について禁止部分グラフとの関係が調べられている。こうした禁止部分グラフの研究では、対象となる命題について有限個の反例が現れることがある。このとき我々はそれを「有限個の反例により命題は偽である」と解釈せず、「有限個の例外を除いて命題は真である」と解釈する。ところがこの立場には1つの落とし穴がある。禁止部分グラフ $H_1,\dots, H_k$ によっては、連結な $\{H_1,\dots, H_k\}$-フリーグラフ全体の成す集合$\mathcal{H}$ が有限集合になることがある。もし $\mathcal{H}$ が有限集合になると、この集合の全ての要素を「有限個の例外」とすることにより、 $\mathcal{H}$ においてあらゆる命題が有限個の例外を除いて真となる。このような $\mathcal{H}$ はグラフの特定の性質に何ら知見を与えない研究上の雑音である。雑音は研究の視界を乱すので、除去する必要がある。以前はこのような例は自明なものしかないと思われていたが、禁止部分グラフの研究が進み、様々なグラフが禁止されるようになってくると、有限集合を生成する非自明な禁止部分グラフの存在が明らかになってきた。本講演では、有限集合を生成する非自明な禁止部分グラフを特定、除去する試みについて、現状を概観する。

会場・世話人の情報
会場へのアクセス 会場へのアクセスは以下の URL をご参照ください.
http://www.shibaura-it.ac.jp/access/
世話人 石渡 哲哉, 井戸川 知之, 江上 繁樹, 榎本 裕子, 尾崎 克久, 亀子 正喜, サイ 貴生, 清水 健一, 鈴木 達夫, 竹内 慎吾, 中津 智則,廣瀬 三平, 福田 亜希子,松田晴英,山澤浩司
連絡係 亀子 正喜 kameko(アットマーク)shibaura-it.ac.jp
石渡 哲哉 tisiwata(アットマーク)shibaura-it.ac.jp
尾崎 克久 ozaki(アットマーク)shibaura-it.ac.jp